PERAMALAN PRODUKSI
(BATAKO)
UD. KENCANA PERMAI
PROFIL PERUSAHAAN
Perusahaan ini bergerak dalam pembuatan produksi batako untuk perumahan dan devoloper dalam kota maupun luar makassar.
Nama organisasi: UD. Kencana Permai
Jenis organisasi : UD yang memproduksi Batako
Pemilik : Yulita Erlina Lantha
Alamat : sudiang raya Km 15, makassar sulwesi selatan
B. Legalitas Usaha
Dari segi legalitas usaha, unit usaha ini beberapa dokumen badan hukum untuk melaksanakan usaha bisnis sebagai bekal agar usaha yang dilaksanakan berjalan lancar di kemudian hari karena unit usaha ini skalanya adalah impor. Beberapa dokumen hukum yang dimiliki berkaitan dengan aspek hukum adalah :
a. Badan hukum
Untuk usaha ini yaitu berupa UD Karena usaha yang kami lakukan sifatnya merupakan usaha bersama dengan modal bersama dan keuntungan dibagi bersama berdasarkan besarnya Inbreng dari masing masing pemodal, dimana seluruh aktivitas yang timbul dalam pengelolaan menjadi tanggung jawab UD.
Selain itu, badan hukum yang didirikan berdasarkan perjanjian, melakukan kegiatan usaha dengan modal dasar yang seluruhnya terbagi dalam saham, badan hukumnya merupakan subyek hukum dan kekayaan yang terpisah (modal ).
b. Tanda daftar perusahaan dan Surat ijin usaha
Usaha toko buah impor memiliki ujin usaha dari dinas perindustrian dan perdagangan dan sudah terdaftar sebagai pelaku usaha penjualan BATAKO. Sesuai dengan UUno. 3/1982 ttg Wajib Daftar Perusahaan, Perusahaan adalah setiap bentuk badan usaha yang menjalankan setiap usaha yang bersifat tetap dan terus menerus didirikan, bekerja, serta berkedudukan dalam wilayah negara Indonesia dengan tujuan memperoleh keuntungan/laba.
c. NPWP
Sebagai unit bisnis, kami juga mendaftarkan NPWP atas aktiva usaha kami ke Departemen Perpajakan setempat. NPWP merupakan nomer yang diberikan kepada wajib pajak sebagai sarana dalam administrasi perpajakan yang dipergunakan sebagai tanda pengenal diri atau identitas bagi wajib pajak dalam melaksanakan hak dan kewajiban perpajakannya.
d. Ijin Domisili dan IMB
Karena unit usaha batako ini akan didirikan di atas sebidang tanah demi kelancaran usaha maka kami selaku pengusaha juga melakukan perijian untuk pengeringan tanah. Artinya bahwa kami melakukan pengalihfungsian lahan yang semula untuk pertanian menjadi bangunan untuk tempat usaha. Selain itu juga kami melakukan perijinan kepada pemerintah daerah setempat untuk ijin domisili, karena nantinya selaha berlangsung beberapa karyawan kami akan ada yang tinggal dan menetap di tempat tersebut.
e. Bukti Diri
Unit usaha kami juga mempunyai bukti diri mengenai kepemilikan usaha dan keterangan lain yang berhubungan dengan ud. Kencana permai
Segmentasi, Targeting dan Positioning
a. Segmentasi
Yang menjadi segmen dari produsen adalah segmen perumahan
b. Targeting
Yang menjadi target market adalah perumahan dan devoloper
c. Positioning
Kami ingin meenciptakan image atau citra perusahaan di benak konsumen sebagai produsen batu batako yang berkualitas.
PERAMALAN PRODUKSI
Periode | |||
2007 | Produksi | Harga baha baku | Teaga kerja |
januari | 4.500 | 5.000.000 | 15 |
februari | 4.400 | 5.500.000 | 14 |
maret | 4.600 | 5.300.000 | 15 |
april | 4.300 | 5.500.000 | 15 |
mei | 4.400 | 5.500.000 | 15 |
juni | 4.500 | 5.500.000 | 16 |
juli | 4.200 | 6.000.000 | 17 |
agustus | 3.800 | 5.800.000 | 20 |
september | 4.500 | 5.800.000 | 20 |
oktober | 4.500 | 5.850.000 | 18 |
November | 4.600 | 6.000.000 | 19 |
Desember | 4.000 | 6.000.000 | 20 |
Regresi Linier Berganda
• Pembahasan akan meliputi regresi linier dengan 2 Variabel Bebas (X1 dan X2) dan 1 Variabel Tak Bebas (Y).
• Bentuk Umum : Y = a + b1 X1 + b2 X2
Y : peubah takbebas a : konstanta
X1 : peubah bebas ke-1 b1 : kemiringan ke-1
X2 : peubah bebas ke-2 b2 : kemiringan ke-2
n: bulan
y : produksi
X1 : Harga bahan baku
X2 : tenaga kerja
Nilai a, b1, b2, dan dapat dicari dengan mensubstitusikan :
a. n + b1 Σ X1 + b2 Σ X2 = Σ Y ( 1 )
a. Σ X1 + b1 Σ X12 + b2 Σ X1X2 = Σ X1Y ( 2 )
a. Σ X2 + b1 Σ X1X2 + b2 Σ X22 = Σ X2Y ( 3 )
n | x1 dlm jutaan | x2 | y | x1 x2 jutaan | x1y | x2y | x1² | x2² | y² jutaan |
januari | 5 | 15 | 4.500 | 75 | 25.500 | 67500 | 25 | 225 | 20250 |
februari | 5.5 | 14 | 4.400 | 77 | 24.200 | 61600 | 30.25 | 196 | 19360 |
maret | 5.3 | 15 | 4.600 | 79.5 | 24.380 | 69000 | 28.09 | 225 | 21160 |
april | 5.5 | 15 | 4.300 | 82.5 | 23.650 | 64500 | 30.25 | 225 | 18490 |
mei | 5.5 | 15 | 4.400 | 82.5 | 24.200 | 66000 | 30.25 | 225 | 19360 |
juni | 5.5 | 16 | 4.500 | 88 | 24.750 | 72000 | 30.25 | 256 | 20250 |
juli | 6 | 17 | 4.200 | 102 | 25.200 | 71400 | 36 | 289 | 17640 |
agustus | 5.8 | 20 | 3.800 | 116 | 22.040 | 76000 | 33.64 | 400 | 14440 |
september | 5.8 | 20 | 4.500 | 116 | 26.100 | 90000 | 33.64 | 400 | 20250 |
oktober | 5.85 | 18 | 4.500 | 105.3 | 26.325 | 81000 | 34.22 | 324 | 20250 |
november | 6 | 19 | 4.600 | 114 | 27.600 | 87400 | 36 | 361 | 21160 |
Desember | 6 | 20 | 4.000 | 120 | 24.000 | 80000 | 36 | 400 | 16.000. |
Σ mean | 67.75 | 204 | 52300 | 1157.8 | 347.645 | 886.400 | 383.59 | 3526 | 228610 |
Tetapkan Persamaan Regresi Linier Berganda = a + b1 X1 + b2 X2
n = 12
Σ Y = 52300
Σ X1 = 67.75 Σ X1Y = 347.645 Σ X12 = 383.59 Σ Y2 =228610
Σ X2 = 204 Σ X2Y = 886.400 Σ X22 = 3526 Σ X1X2 = 1157.8
a. n + b1 Σ X1 + b2 Σ X2 = Σ Y ( 1 )
a. Σ X1 + b1 Σ X12 + b2 Σ X1X2 = Σ X1Y ( 2 )
a. Σ X2 + b1 Σ X1X2 + b2 Σ X22 = Σ X2Y ( 3 )
Sehingga didapatkan tiga persamaan berikut:
(i) 12a + 67.75 b1 + 204 b2 = 52300
(ii) 67.75 a + 383.59 b1 + 1157.8b2 = 347.645
(iii) 204a + 1157.8b1 + 3526 b2 = 886.400
Lakukan Eliminasi, untuk menghilangkan (a)
(ii) 67.75 a + 383.59 b1 + 1157.8b2 = 347.645 x 12
(i) 12a + 67.75 b 1 + 204 b2 = 52300 x 67.75
(ii) 813 a + 4603 b1 + 1389b2 = 4171740

(iv) 13b1 + 7 b2 = 628415
Lalu
(iii) 204a + 1157.8b1 + 3526 b2 = 886.400 x12
(i) 12a + 67.75 b1 + 204 b2 = 52300 x 204
(iii) 2448a + 1389b1 + 42312 b2 = 10669200

(v) 7b1 + 696 b2 = 32400
Selanjutnya, eliminasi (b1) dan dapatkan nilai (b2)
(v) 7b1 + 696 b2 =32400 x 13
(iv) 13b1 + 7 b2 = 628415 x 7
(v) 91b1 + 9048 b2 = 4412000

8999b2 = 13095
b2 = 1.45
Dapatkan Nilai (b1) dan nilai (a) dengan melakukan substitusi, sehingga:
7b1 + 696 b2 =32400
Perhatikan b2 =1,45
7b1 + 696(1,45) =32400
7b1 + 1009,2 =32400
7 b1 = 31390
b1 = 0,0002
(i) 12a + 67.75 b1 + 204 b2 = 52300
Perhatikan b1 = 0,002 dan b2 = 1,45
12a + 67.75 (0,002)+ 204 (1,45)= 52300
12a + 0,1355 + 295,8 = 52300
12a =22791
a = 3899
Sehingga Persamaan Regresi Berganda
a + b1 X1 + b2 X2 dapat ditulis sebagai 3899+0,0002X1+1,45X2
Yjanuari= 3899+ 0,002.67.75+1,45.204
= 3899+ 0,0135+ 295,8
= 41494,8
=41495
Tidak ada komentar:
Posting Komentar